RalA promotes a direct exocyst-Par6 interaction to regulate polarity in neuronal development.

نویسندگان

  • Amlan Das
  • Sangeetha Gajendra
  • Katarzyna Falenta
  • Madeleine J Oudin
  • Pascal Peschard
  • Shanshan Feng
  • Bin Wu
  • Christopher J Marshall
  • Patrick Doherty
  • Wei Guo
  • Giovanna Lalli
چکیده

Cell polarization is essential for neuronal development in both the embryonic and postnatal brain. Here, using primary cultures, in vivo postnatal electroporation and conditional genetic ablation, we show that the Ras-like small GTPase RalA and its effector, the exocyst, regulate the morphology and polarized migration of neural progenitors derived from the subventricular zone, a major neurogenic niche in the postnatal brain. Active RalA promotes the direct binding between the exocyst subunit Exo84 and the PDZ domain of Par6 through a non-canonical PDZ-binding motif. Blocking the Exo84-Par6 interaction impairs polarization in postnatal neural progenitors and cultured embryonic neurons. Our results provide the first in vivo characterization of RalA function in the mammalian brain and highlight a novel molecular mechanism for cell polarization. Given that the exocyst and the Par complex are conserved in many tissues, the functional significance of their interaction and its regulation by RalA are likely to be important in a wide range of polarization events.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RalA and the exocyst complex influence neuronal polarity through PAR-3 and aPKC.

Neuronal polarization requires localized cytoskeletal changes and polarized membrane traffic. Here, I report that the small GTPase RalA, previously shown to control neurite branching, also regulates neuronal polarity. RalA depletion, or ectopic expression of constitutively active RalA in cultured neurons inhibit axon formation. However, expression of a constitutively active RalA mutant that is ...

متن کامل

RalA and RalB differentially regulate development of epithelial tight junctions

Tight junctions (TJs) are structures indispensable to epithelial cells and are responsible for regulation of paracellular diffusion and maintenance of cellular polarity. Although many interactions between TJ constituents have been identified, questions remain concerning how specific functions of TJs are established and regulated. Here we investigated the roles of Ral GTPases and their common ef...

متن کامل

Ral-regulated interaction between Sec5 and paxillin targets Exocyst to focal complexes during cell migration.

Changes in cellular behavior that cause epithelial cells to lose adhesiveness, acquire a motile invasive phenotype and metastasize to secondary sites are complex and poorly understood. Molecules that normally function to integrate adhesive spatial information with cytoskeleton dynamics and membrane trafficking probably serve important functions in cellular transformation. One such complex is th...

متن کامل

The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic.

The exocyst complex plays a critical role in targeting and tethering vesicles to specific sites of the plasma membrane. These events are crucial for polarized delivery of membrane components to the cell surface, which is critical for cell motility and division. Though Rho GTPases are involved in regulating actin dynamics and membrane trafficking, their role in exocyst-mediated vesicle targeting...

متن کامل

Ral GTPases regulate neurite branching through GAP-43 and the exocyst complex

Neurite branching is essential for the establishment of appropriate neuronal connections during development and regeneration. We identify the small GTPase Ral as a mediator of neurite branching. Active Ral promotes neurite branching in cortical and sympathetic neurons, whereas Ral inhibition decreases laminin-induced branching. In addition, depletion of endogenous Ral by RNA interference decrea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 127 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2014